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FOREWOR D

This document is part of the final report for the Operationally Efficient Propulsio n
System Study (OEPSS) conducted by the Rocketdyne Division of Rockwel l
International . The study was conducted under NASA contract NAS10-11568, and th e
NASA Study Manager was Mr . R. E . Rhodes . The Rocketdyne Program Manager was
R. P. Pauckert, the Deputy Program Manager was G. Waldrop, and the Project
Engineer was T . J . Harmon . The period of study was from April 1989 to October 1992 .

ABSTRACT
A study was directed towards assessing viability and effectiveness of an ai r

augmented ejector/rocket . Successful thrust augmentation could potentially reduce a
multi-stage vehicle to a single stage-to-orbit vehicle (SSTO) and, thereby, eliminate
the associated ground support facility infrastructure and ground processing require d
by the eliminated stage . The results of this preliminary study indicate that an ai r
augmented ejector/rocket propulsion system is viable. However, uncertaintie s
resulting from simplified approach and assumptions must be resolved by furthe r
investigations .
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1 . SUMMAR Y

This study was directed towards assessment of viability and effectiveness of an ejector/rocket .
or rocket engine nozzle after-burning concept . The focus was on performance enhancement an d
thrust augmentation aspects of an ejector/rocket system for ALS type vehicle and its effect o n
overall vehicle/propulsion system such as payload weight, Gross Lift-Off weight, an d
propellant weight .

Ideal flow analyses were conducted and a simple fixed geometry shroud design was optimize d
to operate as an ejector system in the low speed regime (flight Mach 0 to 2) to augment AL S
rocket engine thrust . An ejector with secondary inlet area of 80 ft**2 with area ratio of 1 .63
was selected which produced substantial ideal thrust augmentation at all flight Mach numbe r
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range of 0 to 2 when utilizing just rocket engine excess fuel (w/o injection of additional fuel) .
This resulted in maximum payload increase in excess of 27% with ALS fixed vehicle size, o r
Gross Lift-Off Weight (GLOW) and propellant weight reduction in excess of 19 & 23 %
respectively with constant ALS baseline payload of about 120 Fibs . and a closely matched
flight trajectory for ejector/rocket system . Increase in Isp of about 40 sec would be required t o
obtain the same (27%) payload increase for ALS .

Effect of combustion of injected fuel, in addition to engine excess fuel, with ingested air wa s
also investigated . The ejector design was slightly modified from the design selected fo r
operation with combustion of rocket engine excess fuel only, in order to prevent therma l
choking of ejector flow (inlet area of 80 ft**2 and area ratio of 1 .92) . Payload increase i n
excess of 33% with ALS fixed vehicle size, or Gross Lift-Off Weight (GLOW) and propellan t
weight reduction in excess of 19% & 22% respectively with constant ALS baseline payloa d
were achieved . Ideally the effect of injection of additional fuel will be more pronounced with a
more closely matched flight trajectory and even more with an ejector geometry more suitabl e
for fuel addition flying an appropriate flight trajectory .
Based on the result of this preliminary study it is concluded that an ejector/rocket propulsio n
system is a "viable" system and can be effectively utilized for ALS type missions . However,
uncertainties, resulting from simplified approach and assumptions in regards to effectiveness o f
an ejector/rocket system must be resolved by further investigations . Major issues and re q uired
efforts are identified and a more comprehensive study is essential and highly recommended .

2 . INTRODUCTION/BACKGROUN D

The simplest form of air-augmentation of a rocket propulsion system (Ref . 1 & 2) is to install a
simple geometry light weight extension of the rocket engine nozzle . The air augmented
shrouded rocket concept is basically a conventional rocket engine (like ALS) shrouded by a
simple ejector which captures, directs and mixes atmo spheric air with the rocket nozzle exhaus t
gas. The air augmentation is the ingestion, compression and mixing and combustion of ai r
with exhaust gas (and/or additional fuel) ; so that the specific impulse of the system increases .
This concept is promising since the all rocket propulsion systems have excess fuel in thei r
exhaust gas and if the otherwise wasted chemical energy of this fuel contained in the mixture o f
fuel rich exhaust (or added fuel) is combusted with the ingested atmospheric air and furthe r
expanded in a divergent section , additional thrust and increased Isp is produced fro m
additional expansion surfaces .

Figure 1 illustrates ejector/rocket propulsion system concept . The conventional bell-nozzle of a
rocket engine (ALS) is surrounded by an ejector consisting of the air inlet and a divergen t
mixing/after-burning chamber . The two streams . primary formed by rocket exhaust an d
secondary stream consisting of atmospheric air begin to mix at the exit of rocket engine nozzl e
and combust (with or without additional injected fuel), with relatively low secondary t o
primary mass flow ratio supersonic exhaust appears to exist . In the mixing process. part of th e
primary stream's high kinetic and thermal energy is transferred to the secondary stream b y
direct momentum exchange. Additional thermo-chemical energy is released by combustion of
fuel rich exhaust and/or injected fuel . In the process of energy exchange, the momentum flu x
of the fluid increases and produces useful thrust .

In order to achieve efficient mixing and reaction, flow in combustors for usual ducted rockets ,
ram-rockets, and ejector jet systems must be subsonic . Re-acceleration of the exhaust to
supersonic speeds requires second throat and considerable additional volume . However, i f
mixing and reaction could be accomplished in supersonic nozzle flow, the a ugmentation can be
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realized in spite of the lower cycle efficiencies (high entropy rise/high total pressure loss )
associated with supersonic mixing and after-burning .

3. OBJECTIVE

The purpose and scope of this study is to perform simplified analysis to determine viability o f
Rocket Engine Nozzle After-burning concept and to identify an ejector geometry envelo p
suitable for operation in the range of flight Mach numbers of 0 to 2 . Inviscid flow and idea l
pumping, mixing, combustion, with no aerodynamic losses is assumed to conduct th e
analyses. In order to eliminated geometric (design) complexity and increased volume/weight
associated with second throat and expansion surface, the secondary air flow is limited to a leve l
that supersonic mixing and combustion is achieved with a diverging ejector geometry . Tne
ejector is designed as a simple fixed geometry shroud and therefore its inlet kinetic energ y
efficiency (total pressure losses) limits its effectiveness above Mach 2 . The inlet of this simple
fixed geometry ejector, assuming ideal ejector pumping, will limit secondary air flow rate t o
achieve supersonic mixing and combustion in the ejector .

4. OVERALL APPROAC H

ALS type vehicle and flight trajectory is used to determine an ejector geometry that provide s
significant thrust increase for a single Space Transportation Main Engine (STME) . In order to
define an ejector geometry envelop suitable for operation in the range of flight Mach number o f
0 to 2, an attempt is made to identify the optimum ejector geometries (point designs) for stati c
operation, flight Mach numbers of -0 .45, -0.8, -1 .0, and -2 conditions . These optimum
geometries provide maximum ejector/rocket thrust at their respective flight speeds based o n
ALS all rocket flight trajectory without any additional injected fuel . Weights of these optimu m
geometries then are estimated based on existing available ALS nozzle weight data . Mission
analysis is performed with ALS reference (baseline) vehicle and payload capacity is determine d
with and without ejector installed on all engines . The increased thrust and specific impuls e
with ejector is traded off against the resulting increase in drag and weight . The ejector geometr y
that results in maximum payload increase is then selected as the ejector baseline geometry .
Performance or thrust of ejector/rocket propulsion system, unlike all rocket system . depend s
not only on altitude but on flight speed also, therefore initial flight trajectory requires som e
modifications . A new flight trajectory then is identified that more closely matche s
altitude/thrust/flight Mach number and new calculated thrust is used to perform missio n
analysis again . This iteration process will eventually (in 2-3 iterations) converges and results i n
matched altitude/thrust/flight Mach number . The effectiveness of ejector is then determine d
based on payload increase with fixed vehicle size or GLOW & propellant weight reduction wit h
fixed payload wei ght.

This ejector geometry is also used to determine the effect of injection of additional fuel o n
ejector performance . Slight modification to ejector base-line geometry (area ratio) is required to
eliminate possibility of thermal choking of ejector flow, if fuel is to be added continuousl y
from static to Mach 2 operation . Again the payload increase or GLOW & propellent weigh t
reduction is determined by mission analysis . The iteration process to obtain a solution that i s
achieved by matching trajectory with performance/thrust level is again necessary .

5. TECHNICAL APPROAC H

Ejector performance/thrust is affected by ambient air (free-stream) condition, flight velocity ,
secondary flow condition (inlet geometry and pumping capability), primary rocket flow
thermo-chemical condition, energy released by combustion of ingested air with fuel (nozzle
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exhaust excess w or w/o additional injected) and ejector geometry . Most importantly, ejecto r
performance depends on the level of mixing between primary and secondary flow an d
combustion of secondary air with additional injected and/or rocket exhaust excess fuel . The
pumping capability of an ejector depends on the level of mixing between the two streams an d
therefore mixing and pumping are inter-related and, especially at low speeds, any change in th e
mixing level directly affects pumping and vice versa.

This preliminary study was conducted with certain assumptions to simplify calculations . The
simplified approach was taken to eliminate tedious and time consuming, sophisticated/advance d
calculation techniques, yet perform first level analysis to assess viability of an ejector/rocke t
propulsion system. One dimensional inviscid, ideal flow with equilibrium chemistry an d
jumped (path independent) calculation was conducted. Therefore all the effects of flow multi -
dimensionality, non-uniformities (pressure, temperature, velocity, Mach number and chemica l
composition), viscosity, incomplete mixing & pumping, and chemical kinetics are neglected .
Losses associated with shocks due to flow interactions, velocity vector (divergent), incomplete
mixing and combustion, wall heat transfer and internal drag are not accounted for, and it i s
assumed that mixing and combustion is completed (equilibrium) at ejector exit. For simplicity .
the effect of boundary layer (developed on the air induction system wall and on primary nozzl e
wall) on ejector mixing/pumping and performance along with base flows and nozzle lip effects
are neglected. Flow separation in the primary nozzle and ejector section due to adverse pressur e
gradient and shock boundary layer interaction is also neglected and the system is flowing full .

5 .1 Ejector Thrust Calculatio n

In order to determine ideal thrust generated by ejector/rocket, ambient, primary an d
secondary flow conditions at the plane where mixing starts (station 1 Figure 1), an d
ejector geometry must be known. Primary flow condition, at the rocket engine nozzle exi t
was determined based on STME GG cycle Main Combustion Chamber (MCC) data .
Engine data, chamber total pressure of 2250 psia and mixture ratio (MR) of 6 with fue l
(H2) temperature of 190 °R and LOX temperature of 170 °R > were used and the flow
was expanded with equilibrium chemistry to nozzle area ratio of 40 (e=40) to determin e
rocket engine nozzle exit flow conditions (Ref . 3) . The secondary air flow condition s
were determined based on free-stream static pressure, temperature and flight velocity an d
in subsonic flight regime the secondary inlet flow was assumed choked (Ms=0 .9) and at
supersonic flight speed(s) (Mo=2) it is shocked down to subsonic flow . Isentropic inle t
process determines secondary flow conditions at subsonic flight speeds, but in order t o
account for inlet total pressure loss (entropy rise) at flight Mach 2 the free-stream tota l
pressure was adjusted according to inlet kinetic energy efficiency reported by Marquard t
on ejector/ramjet test (Ref. 4) .

Mathematically, the ejector is described by applying the various Conservation Laws .
along with the Equation of State for ideal gases, between the two defined stations 1 & 2
(beginning of mixing and ejector exit) as shown in Figure 1 . One dimensiona l
equilibrium ejector code developed by Dr . L. Burkardt at NASA LeRc (Ref . 5) was
modified and used to facilitate ejector thrust calculations . Ejector wall pressure force i s
determined by linear pressure distribution along the flow axis assuming the inlet wal l
pressure is due mostly to secondary stream .

The calculated ejector/rocket thrust includes air inlet ram drag and total pressure losses a t
Mach 2. The resultant ejector thrust is normalized by the rocket thrust operating at th e
same ambient condition and thrust augmentation (Aug) represents increase in the rocke t
thrust .
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5 .2 Mission Analysi s

Ejector performance benefits were estimated by running trajectories for typical AL S
vehicles and comparing changes in payload capability and/or gross weight . Two vehicle s
were considered, one having a reference payload of about 146,000 lbs . and a more recen t
design..with about 120,000 lbs . payload . As ground rules ALS vehicles were two-stag e
parallel burn with seven Liquid Rocket Booster (LRB) engines and three core engines .
All comparisons are made with one engine out and with ALS nominal orbit of 28 .5
degree 80 X 150 n .mi. The thrust increase is modeled as a function of altitude form lift-
off to about flight Mach 2 while vehicle reference area increases by ejector inlet area an d
then ejectors are jettisoned.

Vehicle data for the two ALS configurations were based on data obtained form one of th e
vehicle contractors for typical designs . Weight breakdowns were available with sufficien t
detail to allow scaling to new sizes and accounting for the mixture ratio changes in th e
cases with fuel addition in the ejectors .

Trajectories considered of an eight-second vertical rise . followed by an instantaneou s
kick-over and a gravity turn which terminated when the dynamic pressure fell to 5 psf .
An optimal-pitch profile was then followed to the perigee of 80 X 150 n .mi . Tne ejectors
were used from lift-off to about Mach 2 and then jettisoned .

Ejector performance was modeled as a function of altitude based on a reference (ALS al l
rocket) trajectory . Since the ejector performance varies with both altitude and Mach
number, this simplification introduces an inaccuracy if the Mach number-altitude profil e
vary significantly from reference trajectory . The engine performance with ejectors .
therefore, is re-calculated in an iterative process to match the performance to th e
trajectory .

5 .3 Ejector Weight Estimat e

Ejector performance level is a strong function of shroud length . Tne longer the length of
an ejector the more complete mixing of primary and secondary flow, pumping, an d
combustion, but also increased weight and large ejector volume . The weight, therefore ,
has to be traded of against increase in performance (thrust) . Rocket En gine Nozzle
Ejector (RENE) experiment (Ref 6) results indicate that an ejector length equivalent to 1
to 2 times ejector initial diameter is sufficient for application at flight Mach 2 . Ejector
length equal to ejector initial diameter (L/D1=1) is selected for this study to determin e
ejector weight.

Ejector weight is estimated based on ALS available rocket nozzle weight data . ALS Gas
Generator (GG) cycle nozzle wei ght breakdown is for average jacket thickness of 0 .065
inch. Considerin g the short duration that ejector is bein g used and since it is mostly
exposed to a cooler gas. (ingested air) compared to rocket nozzle, 0 .075 inch thick
stainless steel was selected (Ref . 7) with ejector length e q ual to the initial diameter as a
basis to calculate ejector weight . A factor of two (2) to ejector shroud weight was applie d
to account for the attachments and supports wei ghts . Variation of estimated ejecto r
shroud weight, using stainless steel, with secondary inlet area is shown in Figure 2 .
Advanced exotic material can be considered as an alternative to stainless steel in order t o
reduce ejector weight significantly .
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6. DISCUSSION AND RESULTS

As previously stated the ejector performance is mainly influenced by ambient, primary &
secondary flow conditions at the plane where mixing begins and by the geometry of ejecto r
shroud. The primary and secondary flow conditions are determined from Main Combustio n
Chamber (MCC) and flight free-stream conditions . To select the ejector geometry, parametric
studies were performed to determine ejector inlet and exit areas that produced maximum thrus t
augmentation at a specific point of flight trajectory by utilizing rocket engine excess fuel onl y
(without any additional injected fuel) . This parametric study resulted in an ejector desig n
optimized for operation at sea level (Mo=O) with inlet area of 80 ft**2 and ejector area ratio o f
about 1 .63 ( the minimum area without thermally choking ejector flow), Figure 3. The ejector
geometry optimized for static operation, then was used to determine its thrust augmentation u p
to flight Mach number of 2 . The resultant thrust augmentations (ratio of ejector thrust increas e
to rocket thrust), achieved without injection of additional fuel, also represent increase in Isp .
Thrust augmentation achieved at static condition is in excess of 12% as shown in Figure 4, an d
despite increase in ram drag (Figure 5), augmentation increases in subsonic regime as fligh t
Mach number is increased, but due to low secondary mass flow (Figure 6) and high inductio n
system (inlet) losses ejector effectiveness at fli ght Mach 2 is significantly reduced . Inlet
designed to operate efficiently at Mach 2 (8% total pressure loss according to MIL-E-5008B )
increases ejector thrust augmentation by more than a factor of 2 .

A larger ejector, as expected, with higher secondary to primary mass flow rate increased thrus t
augmentation at higher flight speed while reducing thrust augmentation at static operation . An
ejector geometry with inlet area of 125 ft**2 and area ratio of slightly less than 2 .0 provided
maximum thrust augmentation and Isp increase at flight Mach number of 0 .45, Figure 7 . The
ejector with inlet area of 125 ft**2 and area ratio of 2 .07 (area ratio increased from 1 .99 to
prevent thermal chocking at sea level) produced lower thrust at sea level operation and higher
thrust at flight speeds above Mach 0 .45 compared to smaller ejector designed for Mach 0 a s
shown in Figure 8 .

Another set of parametric study was conducted to obtain an ejector geometry optimized fo r
flight Mach number of 0.8 to achieve greater thrust augmentation at higher speeds . It is a trade
between using a smaller ejector size that will provide high static thrust augmentation an d
reduced thrust augmentation at high flight Mach numbers, and a larger ejector size that wil l
provide higher thrust augmentation at high flight speeds and reduced static performance. In fact
an ejector geometry designed for Mo=0 .8 will require an inlet area in excess of 200 ft**2 and
will result in excess of 10 % loss in rocket thrust (-10% Aug with 200 ft**2 inlet) at lift off . In
addition the ejector becomes extremely large, heavy and impractical . It was then concluded that
ejectors with inlet area in the range of 50 ft**2 ( slightly smaller than Mo=0 design) to 16 0
ft**2 ( slightly larger than Mo=0 .45 design) would be proper candidates for the baselin e
ejector geometry. Thrust augmentation level of ejectors with inlet area in the range of 80 to 14 0
ft**2 is shown in Figure 9 .

In order to determine an optimum ejector size and geometry, mission analysis was conducte d
for the range of ejector inlet areas (As=50 to 160 ft**2) and area ratios (ARej=1 .15 to 2 .26)
using baseline ALS vehicle with payload of about 146 Klbs . The increased thrust and specific
impulse obtained with the ejector were traded off against the resulting increase in externa l
aerodynamic drag and weight . The results of trajectory analysis are presented in Figure 10 .
Constant maximum payload gains, in excess of 16% was obtained with fixed vehicle size an d
ejector geometries with inlet areas of 80 to 120 ft**2. Ejector with inlet area of 80 ft**2 an d
area ratio of about 1 .63, smallest with near maximum payload gain, is selected as baselin e
geometry . The Gross Lift-Off Weight and propellant weight reduction of 9 .6% & 11 .8 %
respectively can be achieved with baseline ejector geometry and fixed ALS baseline payload o f
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about 146 Klbs . An isolated case with the ejector length equal to twice the initial diameter wa s
also examined. The result indicates a reduction of about 2% in payload increase (–14% )
compare to the ejector length equal to one initial diameter .

The baseline ejector geometry with inlet area of 80 ft**2 and area ratio of 1 .63 was used to
determine effect of combustion of additional injected fuel on ejector performance flyin g
reference trajectory. Ejector flow thermally chokes if sufficient amount of fuel is added, i n
addition to rocket exhaust excess fuel, to bum all the ingested air . In order to prevent thermal
choking, the ejector area ratio must be increased and/or the amount of additional fuel must b e
reduced or fuel must be added at properly selected flight Mach numbers only ( above Mach 0 .5
with F=1) . For an ejector with secondary inlet area of 80 ft**2 (baseline), the ejector area ratio
must be increased to 1 .92 (from 1 .63) . Thrust augmentation and increase in Isp of ejector with
area ratio of 1 .63 with fuel addition at Mach 0 .8 and 1 only (scheduled fuel addition) and wit h
area ratio of 1 .92 with continuous fuel addition (F=1) are shown in Figures 11 & 12 with thei r
respective gains in Figures 13 . The estimated payload gain with fixed vehicle size and reduced
GLOW & propellant weight with fixed payload of about 146 Klbs . indicate continuous fuel
addition, even thought requires larger and heavier ejector, is more beneficial than schedule d
fuel addition .

Ejector effectiveness with the latest ALS baseline vehicle data, obtained from vehicl e
contractor, was also determined based on reference trajectory (ALS all rocket) . This lates t
baseline vehicle design is a lighter vehicle with baseline payload of about 120 Klbs . Similarly ,
this vehicle was used for further comparisons and Fi gure 14 shows the payload improvemen t
as a function of inlet area. Once again the 80 ft**2 inlet area was near optimum and payloa d
increased by about 25% . As the result of more favorable thrust to weight ratio, higher payload
gains and reduction in GLOW & propellant weight were achieved with the vehicle design wit h
about 120 Klbs . baseline payload as shown in F i gure 15 . However, effect of fuel addition wa s
less pronounced for lighter vehicle than heavier vehicle, Figure 16 .

Performance of an ejector/rocket system is dependent on the flight trajectory and fligh t
trajectory is dependent on performance level of propulsion system . Therefore, to determine
ejector effectiveness accurately, flight trajectory must be matched with thrust level, either b y
iteration or using maps of performance v .s altitude and Mach number . The lower-payload (12 0
Klbs.) ALS vehicle was used and en gine performance with ejectors was re-calculated in an
iterative process to match performance (thrust) to the trajectory (altitude and Mach number) . In
the cases examined the vehicle with ejectors reached higher Mach numbers at lower altitud e
(higher dynamic pressure trajectory) compared to the reference flight trajectory due to th e
increased thrust, Figure 17 . This would result in higher ejector performance (Figure 18) so the
original predicted payload gains and GLOW reductions were somewhat conservative (Figur e
19) . One iteration resulted in fairly close match between performance and trajectory, an d
trajectory nearly converged for cases without fuel addition, Figure 20 . This trajectory was als o
used to determine the effect of ejector length (weight) on ejector/rocket effectiveness . Ejecto r
length was varied and payload increase was estimated for ejector L/D of 2, 3 . and 5 and th e
result is presented in Figure 21 . Even though the payload increase was reduced as the ejecto r
length increased (from value of 27 .7% for L/D=1 to about 21% for L/D of 5) still significan t
payload increase was achieved with all the ejector sizes examined .

With first iteration trajectory for the cases with injection of additional fuel, increased thrus t
augmentations were observed (Figure 22), however due to mismatch between performance and
trajectory, the calculated payload increase is somewhat optimistic and GLOW & propellan t
weight reductions are somewhat conservative (Figure 23) . Additional iteration is required i n
order to obtain a converged solution with matched ejector performance/flight trajectory .
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7 . KEY ISSUES

7 .1 Operation Range/Desig n

The design complexity of an air augmented rocket system is primarily dependent on th e
range of flight Mach number that ejector operation and rocket thrust augmentation i s
desired. It seems logical that the operating range of such a system be established b y
determining cost of putting a payload into an orbit . Since a variable geometry shroud
might be required if rocket thrust augmentation extends over a wide range of operation ,
net vehicle thrust increase must be traded off against des i gn complexity & system weight.

A simple fixed geometry ejector can operate up to flight Mach number of about 2-3 . The
shroud then may be jettisoned or, if nozzle pressure ratio is high enough and the level o f
design complexity is acceptable, can be attached to the nozzle and be used as an extensio n
of rocket engine nozzle . It will be advantageous to use a lower area ratio rocket nozzle
(lower weight) if this option is exercised, since usually rocket nozzle exhaust flow i s
over-expanded at low flight speeds .

The system can also be designed to operate over wider range of flight, from take-off t o
flight Mach number of about 6 (ejector/rocket - ram/rocket - all rocket) . This will require
either a variable geometry shroud to allow for efficient air induction and mixing
(exchange of momentum) or thrust augmentation level will be low and even undesirable
in off design range of flight . Again at flight speeds over Mach 6 for all rocket operatio n
the shroud could be attached and used as extension of rocket nozzle to increase nozzl e
performance (higher area rado) during high altitude flight, or jettisoned .

For existing all rocket propulsion systems . shroud design can be tailored to enhance
rocket thrust/performance with no or minimal changes to the system hardware . However
if the concept is being considered for a new e n gine, the propulsion system (ejector/rocke t
or ram/rocket or. .) and the vehicle as a whole must be designed to provide optimu m
operation for the mission .

7 .2 Engine/Vehicle Integratio n

Performance of ejector/rocket propulsion system is greatly influenced by the amount an d
condition of ingested air. However Vehicle/engine configuration and geometry is critica l
in providing the required air to the ejector and in proper mixing of ingested air with rocke t
engines exhaust flow. It is desirable to use one ejector shroud around cluster of rocke t
engines rather than one ejector for each engine in order to reduce ejector length an d
weight and increase mixing . This also requires proper integration of engine with vehicle .

Engine/vehicle integration even thought is a major issue for all rocket systems, it is more
critical for air-augmented systems such as ejector/rocket and requires substantial an d
detailed investigation .
It also must be noted that the size (volume, configuration, and weight) of a n
ejector/rocket system could impact lift off facility and ground operation/lift-of f
preparation considerably . Proper coordination with all groups involved is required in
order to design an optimized ejector/rocket configuration .

7 .3 Air Induction Syste m

For a simple ejector-rocket at low Mach numbers, the performance of secondary air inle t
system is not as critical as it is for the range of supersonic speeds when the ingested air i s
decelerated to subsonic speed by means of shocks . In this case, high total pressure
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recovery with minimum drag is desirable . While these objectives are certainl y
emphasized in any air breathing propulsion systems, the overall performance of an air -
augmented rocket is not quite as sensitive to these parameters as the performance of a
pure air breather such as ramjet .

At low speeds the pumping capability of this system mainly depends on air inle t
geometry, ambient and nozzle exhaust flow conditions and shroud geometry . Since mos t
rocket engine nozzle exhaust flow is over-ex panded at low speed, primary/secondary
flow interaction is complicated by embedded shocks and Mach disks . For ALS typ e
trajectory, the nozzle exhaust flow is over-expanded up to about 26000 ft.

7 .4 Mixing/Combustio n

The key in achieving high performance is the mixing of primary and secondary flow with
minimal loss (entropy rise or total pressure loss ) . Efficient mixing process is essentia l
and requires efficient momentum exchange between the streams to increase total pressur e
of secondary flow and to be able to combust the fuel (either excess from exhaust o r
injected). The mixing and pumping characteristics of nozzle after-burning are dependen t
on geometric design and operating conditions . The actual exit area may be the most
important parameter for controlli ng inlet-ejector matching . Both mixing and pumping can
be altered by the area ratio and shroud LID (length/diameter) . The mixing and pumpin g
characteristics are interdependent, the mixi n g characteristics cannot be changed without a
change occurring in the pumping characteristics . Mixing aids such as vortex generator s
can enhance mixing and if additional fuel is infected the required shroud length can b e
reduces .

7 .5 Dra g

To design a viable system . consideration must be taken in minimizing the overall drag o f
system including ram-drag and external/ internal aerodynamic drag . It is obvious tha t
thrust augmentation could only be realized if static pressure of mixed/burned mixtur e
exceeds ambient pressure .

7 .6 Boundary Layer Effect s

Boundary layers developed on rocket nozzle wall and secondary air induction system wil l
affect system's pumping capability, momentum exchange between the two streams an d
total pressure of mixed region . Flow se paration due to adverse pressure gradient in th e
boundary layer and shock/boundary laver interaction will influence ejector flow an d
performance .

Therefore, in the design process the effects of boundary layer and possibility of boundary
layer bleed system must be considered .

7 .7 Coolin g

Due to high temperature of mixed and combusted secondary air, special coolin g
consideration might be appropriate. In the air induction system, some cooling might be
required for leading edges and local hi gh heat flux area due to shock impingement an d
shock boundary layer interaction .
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8 . RECOMMENDATION S

Limited amount of effort is required to finalize the potential gains calculated with injection o f
additional fuel. The calculated gains did not represent the actual potential gains achievable, with
the ejector geometry used, since performance/trajectory mismatch was observed with the leve l
of iteration (1 iteration) performed . Therefore the potential gains with fuel addition should b e
properly determined with the baseline ejector geometry with additional iterations to matc h
performance to flight trajectory . In addition, since thrust augmentation with injection of
additional fuel was based on ejector geometry optimized with parametric study performed fo r
the cases without fuel addition, an optimum ejector design for fuel addition cases needs to be
identified and its maximum potential gains needs to be calculated with matche d
trajectory/performance.

The simplified assumptions made to perform this study were stated previously . In order to
eliminate uncertainties in the obtained results a rough magnitude effects of thes e
simplifications, as a minimum effort, must be determined . More elaborate, still simplified ,
analyses are required to estimate the level of losses such as mixing, internal drag, wall hea t
transfer, flow non-uniformities, chemical kinetics and shock losses . The effect of shroud
design on ejector flow, inlet performance and secondary air flow must also be investigated an d
to assure entrainment (ingestion) of proper/sufficient amount of air. Advanced analysis
techniques such as Computational Fluid Dynamic (CFD) can be used to characterize ejecto r
flow field in order to determine the ejector losses accurately and to identify any flo w
irregularities in the ejector (such as separation). In addition, the external flow around th e
vehicle can also be modeled and included in the CFD effort to obtain a better understandin g of
effect of vehicle size and geometry on inlet and ejector operation .

Following the completion of the analysis and selection of the ejector geometry (design), a
component test series, including hot-fire tests, is necessary to verify feasibility and viability o f
the concept. Major issues such as pumping capability, mixing, and level of ejector performanc e
(thrust) should be evaluated . Component testing would provide an opportunity to verify prope r
operation of the ejector/rocket system under realistic conditions and to confirm the results fro m
the analysis .

The tests could be performed at Rockwell International test facilities such as Advance d
Propulsion Test Facility (APTF) at Rocketdyne's Santa Susana Field Laboratory (SSFL) fo r
static tests and North American Aircraft's (NAA) Tri-sonic Tunnel for low speed flight regim e
tests. The existing Rocketdyne's rocket engine hardwares (thrust chambers) can be utilize d
with minor hardware modifications (installation of the ejector) in order to minimize the cost an d
hardware fabrication and test schedule .

As a minimum, ejector mass flow, wall pressure and wall temperature should be measured .
The capability exits to survey ejector flow field (species concentration) and to measure engin e
thrust level, flow velocity, temperature, and total pressure . The effects of mixing aids, such as
axial vortex generators, on the mixing and ejector length can be also investigated during
testing .

It is also recommended to investigate similar/alternate concepts and assess their effectivenes s
and viability . A variable geometry ejector design can be considered to increase the effectivenes s
and/or to extend the range of operation . A variable geometry design with added complexity wil l
result in more efficient air induction system up to about flight Mach 5-6 and can result in highe r
gains. With minimal moving parts (like inlet door(s)) an ejector can also be utilized as a n
extension of rocket engine nozzle to increase thrust at higher altitude operation while at the
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same time with lower area ratio nozzle, weight can be reduced with increased performance a t
lower altitudes .

The potential gain achieved with ideal flow calculation shows that ejector/rocket system i s
equivalent to a all rocket system having increased Isp of about 40 sec ., which indicates that
ejector/rocket system has great potential for Single Stage To Orbit (SSTO) application. With th e
high performance level achived, ejector/rocket is a great alternative to all rocket system for eart h
to orbit missions, and has significantly reduced design complexity and required technolog y
development compare to other combined cycle propulsion systems for SSTO .

9 . CONCLUSIONS

This preliminary study results show significant ideal potential gains with Rocket Engine Nozzl e
After-burning (ejector/rocket), for ALS type missions, exist with properly designed ejecto r
shroud. Rocket thrust augmentation was achieved with fixed size ejector with and withou t
additional injected fuel for low speed regime ( flight Mach 0 to 2) . The calculated thrus t
augmentations obtained with ejectors were traded off against shroud weight and additiona l
external aerodynamic drag and resulted in estimated 27% increase in ALS payload with fixe d
ALS baseline vehicle size . Based on sensitivity factors (partial derivatives) developed for th e
ALS baseline vehicle with about 120,000 lbs. payload, an increase in engine performance o f
DIsp=40 secs. would be required to achieve the same payload increase . 19% and 22 %
reduction in ALS baseline Gross Lift-Off Weight (GLOW) and propellant weight were als o
estimated with ALS fixed payload of about 120 Klbs .

The results of this preliminary study with its limited scope indicate that a properly designe d
ejector rocket system is a viable concept with high potential pay-offs. However . uncertaintie s
(such as pumping capability at low speed, primary/secondary flow mixing, interaction effect s
and ejector length, effect of flow non-uniformities and boundaryv layer, level of losses) fro m
adopting simplified approach and assumptions in this study, in regards to effectiveness of a n
ejector/rocket system raise some concerns that can only be resolved and answered by funhe r
thorough investigations .

Shahram Farhangi
Advanced Combustion Devices Analysis
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